- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Thomason, Wil (5)
-
Kingston, Zachary (4)
-
Kavraki, Lydia E (2)
-
Kavraki, Lydia (1)
-
Kavraki, Lydia E. (1)
-
Knepper, Ross A. (1)
-
Kyrillidis, Anastasios (1)
-
Lee, Yiyuan (1)
-
Quintero-Peña, Carlos (1)
-
Ramsey, Clayton (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thomason, Wil; Kingston, Zachary; Kavraki, Lydia E (, IEEE)
-
Quintero-Peña, Carlos; Thomason, Wil; Kingston, Zachary; Kyrillidis, Anastasios; Kavraki, Lydia E (, IEEE)
-
Lee, Yiyuan; Thomason, Wil; Kingston, Zachary; Kavraki, Lydia E. (, IEEE)
-
Thomason, Wil; Knepper, Ross A. (, International Symposium on Robotics Research (ISRR))We present a novel method for performing integrated task and motion planning (TMP) by adapting any off-the-shelf sampling-based motion planning algorithm to simultaneously solve for a symbolically and geometrically feasible plan using a single motion planner invocation. The core insight of our technique is an embedding of symbolic state into continuous space, coupled with a novel means of automatically deriving a function guiding a planner to regions of continuous space where symbolic actions can be executed. Our technique makes few assumptions and offers a great degree of flexibility and generality compared to state of the art planners. We describe our technique and offer a proof of probabilistic completeness along with empirical evaluation of our technique on manipulation benchmark problems.more » « less
An official website of the United States government

Full Text Available